企业数据治理现状与神策数据解决方案全面解析

(2/4)

举报

举报原因:
东方资讯  >    科技 频道  >  正文

企业数据治理现状与神策数据解决方案全面解析

1. 组织架构不适配,推进难度大

数据治理的整体运作需要很高的数据管理统一性和一致性,传统的企业组织架构往往没有单独的数据管理部门,数据治理相关业务由信息科技部门代为统筹,导致数据管理团队和角色比较分散,相关工作无法顺利推进。2. 数据采集和获取困难,数据源格式、类型均不统一企业在数据治理的过程中,需要对接其现有的业务系统、自有触点以及各类三方数据源。但是,当前企业普遍存在的问题是,数据源缺乏统一的标准,不同业务系统的数据格式、类型不统一,导致整体数据获取和对接的成本较高。3. 数据孤岛效应严重,数据标识不一致导致数据打通困难企业的整体业务架构下包含各类独立运作的数据系统,每一类数据的来源都不同且离散,数据孤岛情况非常严重,企业在数据治理过程中缺乏合适的数据模型、架构和框架设计。同时,企业普遍缺乏合适的数据模型来承载全部来源的数据,数据模型本身的抽象难度较大,需要同时考虑数据属性和业务场景,进行数据盘点,实现数据的标准化和统一。4. 企业数据质量管理困难,问题积压严重企业缺乏数据质量的管理体系和方法论,对于数据质量缺乏合理的评估体系,缺少打分机制,无法诊断数据质量问题的严重性,导致质量问题大量积压对业务造成严重影响;另外,企业无法对数据质量做主动监控,只能在发现问题后亡羊补牢,大大增加了企业的数据维护成本。5. 企业数据管理混乱从宏观来看,企业对数据的生命周期无法进行管控,数据的热度、数据的老化情况无法得知,数据日益臃肿,资源占用、成本日益攀升;从微观来看,企业数据命名定义混乱,数据一致性无法得到保障,且数据之间缺少数据关联关系、血缘情况,加大了整体数据管理的难度。6. 数据开放风险大,数据合规安全不可控企业数据在对外输出时,无法提供灵活的数据使用接口,很难实现灵活的数据流量控制、脱敏处理,导致数据API定制化程度高。与此同时,企业缺乏数据合规的管理机制以及技术工具,对数据上报和数据传输无法进行及时的控制和检查。三、详解神策数据的数据治理完整方案数据治理的核心目标是帮助企业整合数据资产,发挥数据资产价值,赋能企业形成数字化的业务闭环,实现企业数字化转型。神策数据的数据治理方案包括数据采集、数据打通、数据质量、数据管理、数据安全五大关键点。接下来详细介绍。1.数据采集:通过SDK等数据合规采集工具,实现全端数据资产积累数据治理应拥有统一的数据合规采集框架,并支持多种数据采集方式。企业可以通过50+种SDK灵活适配各类数据源,完成全域数据源的高效采集。

今日热点

热门推荐

联系我们|eastday.com All Right Reserve 版权所有